Насколько горячая плазма? Обработка плазмой чувствительных к нагреву материалов

Высокие температуры, которые часто достигаются при обработке плазмой, заставляют пользователей задуматься о безопасности процесса, особенно в случае обработки чувствительных материалов. В данной статье рассматриваются вопросы, касающиеся температуры плазмы и теплопередачи во время плазменной обработки, приведены примеры, доказывающие возможность использования плазмы там, где разогрев поверхности является критическим фактором.

 

Основной, казалось бы простой вопрос, но на который не так легко ответить — насколько горячая плазма?

 

Встречающаяся в природе плазма может достигать температуры до 10эВ (1 эВ ~ 11 600˚С) [1]. В промышленных применениях максимальные температуры составляют около 1 эВ [2]. Плазма — это высокоэнергетическое состояние и ее температура зависит от суммарной энергии её частиц (нейтральных атомов, электронов и ионов) и степени ионизации. Это дает возможность классифицировать разные типы плазмы в зависимости от их температуры, различая две основные категории: термические и не термические плазмы.

Мы не будем говорить о термической плазме, когда она полностью ионизирована и все частицы имеют одинаковую температуру. Классический пример — это солнечная корона или термоядерная плазма.

 

Мы рассмотрим не термическую или неравновесную плазму. Она имеет разную температуру электронов, ионов и нейтральных частиц. Таким образом, электроны могут достигать температуры 10 000˚С, в то время как большинство частиц газа значительно менее горячие или сохраняют комнатную температуру. Тем не менее, статическое измерение пламени плазмы, генерируемой системой Plasmabrush® PB3, покажет температуру ниже 1000°С при работе с сухим сжатым воздухом в качестве плазмообразующего газа. Это пламя — передняя, видимая часть плазменной струи и, как правило, которой обрабатывается поверхность изделий.

 

Не термическую плазму часто называют «холодной плазмой», но этот термин следует использовать с осторожностью т.к он включает широкий спектр плазм низкого давления и плазм атмосферного давления. Температура «холодной плазмы», генерируемой системой Piezobrush® PZ2, едва превышает температуру окружающего воздуха. Именно такие системы обеспечивают высокопроизводительную обработку изделий в промышленности.

 

 

Температура атмосферной плазмы

Рис 1. Сопло А250 и статическая температура сопел А250, А350, А450 используемых в Plasmabrush® PB3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Когда пользователи задают вопрос «Насколько горячая плазма?», часто подразумевают не температуру самой плазмы, а температуру у поверхности обрабатываемой поверхности. Для ее точного определения необходимо провести тщательные измерения.

На основе многолетних исследований, компания Relyon Plasma разработала программное обеспечение, которое дает возможность моделировать теплопередачу атмосферной или неравновесной плазмы обрабатываемой поверхности. Расчеты дифференцируются в зависимости от геометрии обрабатываемых поверхностей и настроек, выбранных для входной электрической мощности в плазме.

 

Результаты обширных измерений подтвердили — энергия, переданная обрабатываемой поверхности, затрагивает главным образом её верхние слои. Этот факт делает обработку атмосферной плазмой действительно обработкой именно поверхности. Эффекты очистки и смачивания обусловлены взаимодействием частиц плазмы с верхним атомным слоем поверхности материала и ни при каких условиях не воздействуют на его внутренние слои.

На температуру обрабатываемой поверхности значительное влияние оказывает скорость обработки и расстояние до нее плазменного источника. Оценка этих параметров является абсолютно достаточной для большинства применений обработки плазмой.

 

Температура при интенсивной обработке

Рис 2. Исследование температуры в процессе интенсивной плазменной обработки, смоделированное с помощью специализированного ПО. Различные линии показывают, как меняется температура в процессе обработки в различных слоях пластика толщиной 2мм. В то время как верхний слой нагревается при обработке, температура нижних слоев остается значительно ниже.

Температура атмосферной плазмы при щадящей обработке

Рис 3. Исследование температуры в процессе щадящей плазменной обработки, смоделированное с помощью специализированного ПО. Различные линии показывают, как меняется температура в процессе обработки в различных слоях пластика толщиной 2мм. При щадящей обработке воздействию подвергается только верхний слой, нижние слои сохраняют комнатную температуру

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

В случае некоторых процессов, например, горячего плавления или нанесения покрытий, для получения оптимального результата необходимо более комплексно подходить к оценке влияющих параметров. Для этого, в дополнение к описанным двум параметрам, плазменная система предлагает настройку ещё 3 параметров — потока газа, частоты, электрической входной мощности.

 

 

Рассмотрим 3 варианта применения обработки атмосферной плазмой, критичных к тепловому воздействию и требующих прецизионного контроля техпроцесса. Возможности системы PlasmaBrush® PB3 представлены на примере обработки клеточных колоний, тонких пленок (в данном случае алюминиевая фольга) и осаждения тонких пленок полиэтилена пониженной плотности.

 

Клеточные колонии

 

Предполагается активация микроструктурированной поверхности трехмерных клеточных колоний без их теплового повреждения. Успех данной процедуры оценивается контактным углом дистиллированной воды.

Небольшая избыточная активация (излишняя энергия, переданная поверхности) меняет форму треугольных частей чипов с клеточными колониями (центральная часть рис 4.). Только прецизионная регулировка параметров делает возможной обработку без теплового повреждения. В процессе щадящей обработки поверхностная энергия оставалась ниже максимальной активационной способности, контактный угол при этом снизился с 92о до 43о. В процессе использовалась система PlasmaBrush® PB3 с соплом А250, скорость техпроцесса составляла 250 мм/с, рабочая дистанция 40 мм, в качестве рабочего газа использовался азот.

 

Рис 4. Необработанный чип (слева), детали поврежденного чипа (центр) и неповрежденный чип (справа)

 

 

 

 

 

 

 

Обработка тонких пленок (фольга)

 

Из-за своей небольшой толщины тонкие пленки (фольга) особенно чувствительны к обработке плазмой. Несмотря на то, что обычно проблем с обработкой металлов не возникает благодаря их высокой теплопроводности, тонкие пленки должны обрабатываться особенно бережно, поскольку не имеют достаточной толщины для отвода тепла. Большинство металлов могут обрабатываться на небольших скоростях, порядка 30 мм/с, в то время как пленки должны обрабатываться на скоростях 500 мм/с и выше.

Непрерывная подача из рулона в рулон является примером такого процесса, где фольга обрабатывается при очень высоких скоростях и взаимодействие плазмы с поверхностью составляет доли секунды. Достижение высокой активации в этих условиях является серьезной проблемой. Тем не менее, подходящая технологическая схема процесса позволяет это успешно реализовать. Как вариант — на рис 5. (справа) три плазменных генератора настроены на скорость обработки 12 м/с, чтобы покрыть всю ширину адгезионной поверхности фольги.

 

behandlung-von-aluminiumfolien_plasmatemperatur-800x280

Рис 5. Обработка алюминиевой фольги при подаче из рулона в рулон

 

 

 

 

 

 

 

 

Осаждение расплава полиэтилена низкой плотности на алюминий

 

Нанесение покрытий с использованием плазмы более комплексный процесс, поскольку включает дополнительные узлы для транспортировки порошка. В проведенном эксперименте на алюминиевую подложку наносился полиэтилен низкой плотности (ПЭНП). При осаждении расплавленных покрытий обеспечивается низкая вязкость, необходимая для формирования однородных слоев покрытий. В то же время, скорость процесса гораздо выше, чем при использовании традиционных методов и нет необходимости в удалении растворителей.

Внешняя система транспортирует порошок к выходу плазменного сопла. Порошок плавится непосредственно на поверхности и затем там же охлаждается. Производительность подачи порошка составляет до 7,19 г/мин. Плазма здесь выполняет две функции: во-первых, химическое сшивание поверхности повышается за счет вводимых в нее частиц; во-вторых, горячий расплав распространяется лучше из-за повышенной смачиваемости.

Ключевой параметр в данном случае — скорость. Она должна быть достаточно низкой для обеспечения равномерного покрытия основы (подложки), но в то же время достаточно высокой, чтобы избежать сообщения излишней энергии обрабатываемой поверхности и только что сформированным слоям. В данном эксперименте была установлена скорость 210 мм/с, рабочая дистанция составляла 14 мм. Изделие вращалось со скоростью 14,5 об/мин. Процесс нанесения занял 6 минут.

 

Рис 6. Покрытие расплавом ПЭНП (слева) и генератор плазмы Plasmabrush® PB3 c системой подачи порошка (справа)

 

 

 

 

 

 

 

 

Заключение

 

Даже при использовании не термической плазмы при высоких температурах, в промышленных применениях возможна обработка чувствительных к нагреву материалов за счёт подбора параметров обработки. В особенности — скорости обработки и расстояния до обрабатываемой поверхности. Более того, такая обработка модифицирует только поверхностный слой, в то время, как нижележащие слои остаются незатронутыми. Эти свойства делают обработку атмосферной плазмой эффективным и производительным методом очистки и активации поверхности, даже в случае работы с чувствительными к нагреву материалами.

 

Литература:

[1] K. Küpfmuller, W. Fathis und A. Reibiger, TheoretischeElektrotechnik: Eine

Einführung, Springer, 2013.

[2] H. Zohm, „Plasmaphysik,“ LMU München, München, 2012/2013.

[3] R. A.Wolf, Atmospheric Pressure Plasma for Surface Modification, Hoboken and

Salem, USA: Wiley & Sons and Scrivener Publishing, 2013.

Введите Ваше имя, e-mail и телефон
чтобы получить каталог
по системам Relyon Plasma GmbH

Как к Вам обращаться?

Email:

Номер телефона:

Мы всерьёз озабочены безопасностью данных и не передадим контактную информацию третьим лицам!

Нажимая кнопку на запрос каталога, я подтверждаю свое согласие на получение информации о представленном оборудовании, дееспособность и согласие на обработку персональных данных в соответствии с указанным здесь текстом.

Здравствуйте! Уделите нам еще 1 минуту. Вам интересны испытания на воздействие плазмы на ваши образцы? Их можно сделать в лаборатории Relyon Plasma. Она проводит исследования с различными задачами и материалами. В разделе "Применение" нашего сайта указаны основные эффекты обработки, результатами мы готовы поделиться бесплатно. Что скажете, хотели бы провести такие испытания? Если да, сообщите нам по тел. +7(499)3-722-522 или почте info@partitech.ru. Кстати, ваш запрос успешно доставлен и уже принят в работу!